*

7 $ WU IO
$ X0y3X
3314d S10

AT Y]
777

77

Vg Wi, Mstees, . - . NAS/) XN 229-62
~NE4 117937

/d/ UNPUBLISEED PRELIMINARY DATA (, 2225~/
,t', DC TO AC CONVERSION USING MAGNETORESISTANCE

S CZZ?§:22?5Z/C7)ﬁ

0’]"5/ *
by & i
Richard Bechtel, W. W. Grannemann, Bill Harper r q,s, /éf h7é/

Magnetoresistance devices offer some attraction for use in
low voltage, high current, DC to AC conversion. It is not
difficult to construct devices which have an off-field resistance‘
of less than 0.001 ohm. This off-field resistance is independent*

- of voltage. Thus, a thousand amperes would give a 1 volt drop
across the device. The major problem is in obtaining sufficiently
large on-field resistance to achieve good efficiencies without

major power expenditures in obtaining large magnetic fields.

1. Classical Magnetoresistance

If a current carrying conductor (or semiconductor) is placed
in a magnetic field H, the Lorentz force on a charge carrier with

charge g and effective mass m is

F=3 -qf +2 (¥ x 0 (1)
where

P = mv = charge carrier momentum

Vv = charge carrier velocity

E = electric field

¢ = velocity of light
For a material where the momentum of the charge carrier is
governed by a finite mean free time between collisions T then

equation (1) becomes

d P = - =
a% = %-: qE + % (v x H) (2)
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Then the current density is

T=T, +T,=0F+ z (T, 4T )% (3)
where

ﬁg = electron current density

Eb = hole current density

up = hole mobility

M, = electron mobility

0 = ronductivity
For normal magnetoresistance it has been shown that the

variation in resistance resulting from a magnetic field obeys

Kohler's rule.l Thus,
s+ - F (—3—) (4)
e} ‘0
where

P, = the zero field resistivity,

p(H) = resistivity with an applied magnetic field, H, and
F. = a function depending on the physical properties of the
material and the geometrical configuration of the conductor.

Making use of equations (3) and (4), it is readily shown that

p(H) = é P (5)

1Ziman, J. M., Electrons and Phonons, Oxford Press, London,

1960, p. 491.
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The derivation of the magnetoresistance effect by this
classical method is appropriate only for simple metals and
degenerate semiconductors in which the energy surfaces are
spherical and the relaxation time is independent of energy.

The classical derivation always has as its result a quadratic
dependence of the resistivity on the magnetic field, H. There
are many intermetalic and semiconductor compounds which ex-
perimentally do not behave in this manner. In order to explain
the galvanomagnetic phenomena peculiar to these materials, more
elaborate methods of analysis must be employed.

2. The Magnetoresistance Effect in InSb

Rather than the classical quadratic dependence of magneto-
resistance on magnetic field, the compound semiconductor InSb
displays a change in resistivity proportional to the magnetic
field. The explanation of this deviation from the classical
results has been investigated theoretically by a number of
authors for restricted ranges of temperature and magnetic field.
In particular, it has been shown that in a strong magnetic field,
electron motion normal to the field becomes quantized such that
the density of electron energy levels and the scattering matrices

2

become functions of the magnetic field. These results have

been applied to the investigation of magnetoresistance in InSba3

?Adams,'E. N. and Holstein, T. D., "Quantum Theory of
Transverse Galvanomagnetic Phenomena ," J. Phys. Chem. Solids,

Vol. 10, p. 254-276, 1959.

leadek, R. J., "Magnetoresistance of High Purity InSb in the
Quantum Limit," J. Phys. Chem. Solids, Vol. 16, 1960, p. 1-9.




~4

Several different scattering models have been assumed by the
various authors, but the net conclusion in each case is that
for high purity n-type InSb, the magnetoresistance is a linear
function of H for values of H above a few hundred gauss. 1In
weak fields, it has been shown that the magnetoresistance varies
from an H2 dependence to a linear dependence as the field is
increased from 0 to a few hundred gauss.

In those applications where fields of 10 kilogauss or more
are utilized, the magnetoresistance of InSb is essentially a
linear function of H. That is, the resistivity of InSb can be

expressed as

Py = Po (1+KH) (6)

resistivity in magnetic field H,

o)
e
n

= zero field resistivity,

K = proportionality constant.
In general, the proportionality constant K is primarily a
function of the mobility and the temperature. It is independent
of the geometry of the InSb sample. The net magnetoresistance

of an InSb sample is a function of its geometry.

uBate, R. T., Willardson, R. K., and Beer, A. C., "Trans-

verse Magnetoresistance and Hall Effect in N-type InSb,"
J. Phys. Chem. Solids, Vol. 9, 1959, pp 119-128.
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3. Configurations for Magnetoresistance Elements

The Corbino disk is one of the most common configurations
used in magnetoresistance work. The zero-field resistance is

given by the equation

R, = ;%E' 1n ;% (7)
p, = zero field resistivity

t = thickness

r, = outside radius

r, = inside radius

With a magnetic field applied parallel to the axis of the
diék, the current density will then have a component in the 6
direction in addition to its radial component. Because of the
geometrical symmetry, no Hall field can exist in the 6 direction
due to the radial component of current density. The only Hall
field which can exist within the disk is parallel to its axis.
This Hall field in the z direction results from the 6 component
of current density. Since the 6 component of current density
is proportional to the radial component, and the Hall field
in the z direction is proportional to the 8 component, the Hall
field is proportional to the input current as in the case of
a rectangular slab. In this situation, however, the proportion-
ality constant relating the Hall field and the input current
is small in comparison with that found in a rectangular slab.

The resistance of the disk can be expressed as:
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R =R (1+K1H) K, F(H) (8)
where
Ro = zero field resistance

K, = proportionality constant of bulk InSb

K2 = proportionalitf constant due to geometry
and F(H) is a function of the magnetic field. The exact form
F(H) takes is questionable. The theory of the disk presented
above would indicate that F(H) is of the form:

F(H) = H+)\1H2 (9)
The experimental data for various disks indicate no variation
of resistance proportional to H2 for fields above a few hundred
gauss. Thus, it would appear that for fields up to 22 kilogauss,
the coefficient Al is so small that the H2 term can be neglected.5

For a rectangular slab of InSb, equation (8) can be used
with different constants to account for geometry change. It
should be emphasized that a minimum Hall field across the device
appears to reduce the value of K, in equation (8). For example,

placing large Hall type contacts on a rectangular slab, and

shorting these contacts increases the magnetoresistance.

5This conclusion is valid only for high-purity n-type
polycrystalline InSb. For example: Green, Milton, "Corbino
Disk Magnetoresistivity Measurements on InSb," Journal of
Applied Physics, Vol. 32, No. 7, 1961, lists results for
single crystal InSb in which the magnetoresistance varies with
H2 for fields up to 4-6 kilogauss, varies as H for fields of
6-15 kilogauss, and then begins to approach a zero slope for
fields in the vicinity of 20 kilogauss.
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We have experimentally investigated the rectangular slab,
the Corbino disk, and various other geometrical configurations.
In general, these various specimens have been the scraps obtained
from cutting rectangular slabs and Corbino disks from InSb ingots.
Suprisingly enough, some of these rather odd-shaped pieces have
exhibited magnetoresistance characteristics on a par with the
better modified rectangular slabs and Corbino disks. These
unexpected high magnetoresistances are attributed to the fact
that in each case where this occurred, the geometry and contact
arrangement were such that the Hall effect was minimized.

Tt has been shown that the classical theory of magneto-
resistance as derived from the free electron model and the
phenomenological equation is not applicable to high purity
InSb. The failure of the classical theory is attributed to the
fact that in InSb, both the density of energy levels and the
scattering mechanism are functions of the magnetic field. The
magnetoresistance effects predicted by quantum theory vary
from a quadratic dependence upon H for low fields to a linear
dependence upon H for high fields. For InSb specimens in
which the transverse magnetic field is varied to a value of
several kilogauss, the magnetoresistance is essentially a

linear function of H.




4. circuit Analysis

The circuit diagram of the Bridge MR converter is shown
in Figure 1. This converter consists of the thermionic source,
E, with internal resistance, Tos four magnetoresistors which
comprise the legs of the bridge, two magnetic field sources for
stimulation of the magnetoresistors, a 1:N step-up power trans-

former, and the egquivalent load resistance of the converter RL'

Figure 1

In this converter, the DC to AC conversion is accomplished
by alternately stimulating the two pair of magnetoresistors
comprising opposite legs of the bridge. This switched voltage
divider action produces an alternating voltage at the output

terminal pair of the bridge proper.
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For square wave magnetic field stimulation, one possible
electrical state of the MR Bridge is shown in Figure 2. Here
the off-field resistance of each magnetoresistor is R, while

it has an on-field resistance, KR,

Figure 2

The mesh eguations for this configuration reduce to:

di3 di
v, = (Re+rp):1.3+Lp = t Mg
di3 di4
O =M g= + (Rp#+r )iy + L, g (10)
where: -
2KR + r (K+1)
Re = R R(K+1) i 2r
X g
and -
R(K-1)
V., =E

e R{(R+I) + 2rg
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An equivalent circuit, which is represented by the

equation (10) is shown in Figure 3.

A
M
.: Lp LS ji::>
— i
- i 4 R,
Ve — 3 rp ry
1:=:N

Figure 3

It should be pointed out here that the equivalent circuit
of Figure 3 is valid only for calculating the currents i3 and
i4. The actual power input to the converter from the thermionic
source, E, cannot be derived from this simplified equivalent
circuit. In order to calculate the input power, it is necessary
to refer to Figure 2. The current supplied by the source E is:

L i = 2E N R(K-1) i
172 R{KFI] + ng. R(K+1) + 2rg 3

(11)

With this expression for source current, the input power to the

converter during the first half period  can be calculated.
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During the second half period of magnetic field excitation
the electrical roles of the two pair of magnetoresistors are
reversed. The electrical state of the MR Bridge is then as

shown in Figure 4.

Figure 4
The simplified equivalent circuit for this case is shown
in Figure 5. This circuit is identical to that of Figure 3

with the exception that the equivalent voltage source is

reversed.

R

S AAAY%

v J_ i I"p Lg .
e — 2 r r Ty
FT— P S

Figure 5
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The equations for this circuit are:
' di3 di4
-V, = (Re+rp)13 + Lp = * M 3

di3 - d14

O =M 3=+ (RL+rs)14 + L, g

(12)

During this half period of excitation, the current

supplied by the thermionic source E is:

2E R(K-1)
R{K+I) + 2rg - R(K+1) + 2rg

1

i (13)

ip =1, -1, =
It is apparent from the forms of equations (10) and (13)
that the two separate cases studied thus far may be combined

into one entity. The equivalent circuit which results from

this combination is shown in Figure 6.

+
e(t 3 N - Ly Ry,
S
N

Figure 6

}.-l

The set of equations which describe the electrical behavior

of this circuit becomes:

di3 di4
e(t) = (Rg+r )iy + L, ge= * M g (14)
di3 di4

O =M =+ (RL+rS)i4 + L, e
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The voltage source, e(t), has the form shown in Figure 7.
The period, 2a, of the square wave is the period of the magnetic

field excitation applied to the magnetoresistors.

e(t) O > t

-V T;—-za——ﬂ

be—— 22

Figure 7

From the solutions for i3 and‘iu in the pair of simultaneous
differential equations (14), the input power from the source,
and the power delivered to the load can be calculated.

The solutions to these equations are somewhat cumbersome
for general analyses or numerical calculations by manual methods:
however, the expressions are well adapted to digital computer
solution. The analog computer can reduce much of the analytical

computation in the evaluation process.
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5. Conversion Efficiency for the Bridge MR Converter

The maximum power which the thermionic source can deliver

to a load is:

With the inclusion of the source in the Bridge MR Converter,

the maximum power which the converter can deliver to a load is:

2
v E2 R(K-1)2

—_— e —
Pac = Hﬁ; T OTLREHL)F 2rg][2KR ¥ rgTK?TfT— :

From this expression, it is apparent that the maximum power
which the converter can supply to a load is less than that
available from the source. This detrimental aspect of the
converter circuit is minimized for the magnetoresistor having
the properties:

K > 1

2R << g

KR >> 2r
g

Under these conditions, the conversion efficiency approaches

the value:

£ = 5= = 100%
akE

A plot of efficiency versus magnetoresistance ratio is

shown in Figure 8. This was obtained by analog computer

solution of the MR Bridge equations with appropriate scaling.
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6. Magnetoresistance Experiments

A number of different geometrical shapes, for both
bismuth and indium antimonide, have been tested for their
magnetoresistance properties. None were found to be
consistantly better than the Corbino disk, although some came
quite close. If converter design warrants, the Corbino disk
could be replaced by a more adaptable geometry if a small
loss in the magnetoresistance ratio could be tolerated.

Some geometries were found for which this loss would amount

to only two or three percent.

-15-
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Some of the more interesting geometrical experiments are

represented by the specimens illustrated in Figure 9.

(a)

(c) (D)

Figure 9
The results listed in Table 1 are typical for these geometries.
Table 1

Representative Test Data for the Geometries Shown in Figure 9

Sample I T(°K) H(kg) Rﬁo R, (ohms)
A(InsSb) 1 amp 300 21.5 6.15 0.035
B(InSb) 1 amp 300 21.5 22.5 0.016
c(Insb) 1 amp 300 21.5 50.0 0.0035
D( InSb) 1 amp 300 20.0 51.12 0.0041
D(Bi) 10 amp 80 20.0 145.0 0.012

Note that the MR ratio (R/RO) for specimen C is nearly that

found for the Corbino disk (specimen D). This unexpected high
magnetoresistance for specimen C is attributed to the fact that
the geometry and contact arrangement is such that the Hall effect

is minimized.




